Abstract

AbstractPoly(methyl methacrylate) (PMMA) has been studied by photon correlation spectroscopy in the temperature range 120–150°C. The relaxation functions for longitudinal density fluctuations were determined and analyzed using the empirical function ϕ(t) = exp[−(t/τ)β]. The average relaxation times were calculated for each temperature and compared to mechanical and dielectric relaxation data. The agreement between the various techniques for the primary glass–rubber relaxation was good. The relaxation function observed by light scattering became increasingly broad as the temperature was lowered. This is similar to the results reported previously for poly(ethyl methacrylate) (PEMA). In fact, the light‐scattering relaxation function is dominated by the secondary relaxations in these two polymers. Nevertheless, the average relaxation time 〈τ〉 is dominated by the longest relaxation times associated with the primary glass–rubber relaxation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call