Abstract

We studied the use of a dramatically reduced testing zone in combination with two-photon excitation and photon-burst analysis in high-throughput rare-event detection simulation using a modified flow cytometer. Two-photon excitation measurements were performed with a mode-locked titanium:sapphire laser. Fluorescence emission was measured with a photon-counting avalanche photodiode. Measured signal was analysed offline by autocorrelation and burst detection methods. Test samples were composed of full blood and orange fluorescent polystyrene nanospheres mixed in full blood. Results show that two-photon fluorescence excitation and time-correlation analysis provide a good signal-to-noise ratio for rare-event particle detection in a turbid sample environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.