Abstract

Flexible electronic device requires a novel micro-supercapacitors (MSCs) energy conversion-storage system based on two-dimensional (2D) materials to solve the problems of stiffness and complexity. Herein, we report a novel catalytic introduction method of graphene with adjustable porosity by high-energy photon beam. The graphene/Ti3C2T x heterostructure was constructed by electrostatic self-assembly, has a high cycle life (98% after 8000 cycles), energy density (11.02 mWh cm−3), and demonstrate excellent flexible alternating current line-filtering performance. The phase angle of −79.8° at 120 Hz and a resistance-capacitance constant of 0.068 ms. Furthermore, the porous graphene/Ti3C2T x structures produced by multiple catalytic inductions allowed ions to deeply penetrate the electrode, thereby increasing the stacking density. The special ‘pore-layer nesting’ graphene structure with adjustable pores effectively increased the specific surface area, and its superior matching with electrolyte solutions greatly improved surface-active site utilization. This work offers an alternative strategy for fabricating a 2D heterostructure for an MSC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.