Abstract
We have investigated photon-assisted spin injection into blue phosphorene nanotubes (PNTs) with ferromagnetic cobalt electrodes by nonequilibrium Green’s function combined with light–matter interaction based on the first-order Born approximation. The results show the photo-induced spin current. The spin up and spin down photocurrents flow in opposite directions for zigzag blue nanotubes (ZPNTs) with anti-parallel magnetic configuration of the electrodes. By changing the structures of the blue phosphorene nanotube and the magnetization of the electrodes, multitudes of quantum spin transport properties are investigated, such as the nearly perfect photo-induced spin current and strong photo-polarization current signal. The results suggest that ZPNTs could serve as a potential material candidate for optical communication devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.