Abstract

We present theoretically the quantum electronic transport through an interferometer asymmetrically coupled with triple quantum dots. Using the Keldysh non-equilibrium Green’s function method, the photon-assisted transport properties through the asymmetric quantum system are numerically analyzed. The sidebands of the photon-assisted tunneling process appear when driven by the time-modulated field. The average current spectra are simulated as a function of quantum dot energy to understand the roles of side-coupling strength and time-modulated field in sideband effect and electron tunneling. This is helpful in future design of the basic structures required for quantum computation applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.