Abstract

We investigated the photomutagenicity of thiabendazole (TBZ), a postharvest fungicide commonly used on imported citrus fruits. Using UVA light (320-400 nm), we irradiated bacterial cultures with or without TBZ in a 24-well multiplate. UVA-irradiation without TBZ was not mutagenic to the tester strains, nor was unirradiated TBZ. TBZ was strongly photomutagenic in Escherichia coli WP2uvrA and WP2uvrA/pKM101 strains, weakly photomutagenic in Salmonella typhimurium TA100 and TA98, and not photomutagenic in S. typhimurium TA1535 and TA1538. The photomutagenicity of TBZ was more evident in WP2uvrA/pKM101, which carries the trpE65 ochre mutation (TAA), than in TA100, which carries the hisG46 missense mutation (CCC). In E. coli WP3101-WP3106 and the corresponding pKM101-containing strains, photoactivated TBZ induced predominantly G:C-->A:T transitions and A:T-->T:A transversions. In the plasmid-containing strains only, TBZ induced a moderate number of A:T-->G:C transitions and a few A:T-->C:G and G:C-->T:A transversions. The observation that UVA-irradiated TBZ mutated both G:C and A:T basepairs may explain why WP2uvrA/pKM101 was more sensitive to its mutagenicity than TA100. TBZ that was irradiated before it was added to the WP2uvrA/pKM101 cells was not photomutagenic, which suggests that the photomutagenic products of TBZ were unstable or rapidly reacted with other molecules before being incorporated into cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.