Abstract

Fluence rate-response curves were generated for red-, far-red-, and blue-light-stimulated apical-hook opening in seedlings of several photomorphogenic mutants of Arabidopsis thaliana (L.) Heynh. Compared to wild-type plants, hook opening was reduced in the phytochrome-deficient hy1, hy2, and hy6 mutants in red and far-red light at all fluence rates tested, and in low-fluence blue light, but was normal under high-irradiance blue light. In contrast, the blue-light-response mutants (blu1, blu2, and blu3) lacked the high-irradiance-dependent hook-opening response in blue light while hook opening was normal in low-fluence blue light and in red and farred light at all fluence rates tested. Hook opening in the phytochrome-B-deficient hy3 mutant was similar to wild type in all light conditions tested. The effects of the different mutations on light-induced hook opening indicate that a phytochrome(s) other than phytochrome B mediates hook opening stimulated by red, far-red and lowfluence blue light, while a blue-light-absorbing photoreceptor mediates the blue-light-sensitive high-irradiance response. Although the phytochrome and blue-light photosensory systems appear to work independently for the most part, some of their signal-transduction components may interact since the hy4, and hy5 mutants showed reduced hook-opening responses under conditions dependent on the phytochrome and blue-light-photosensory systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call