Abstract

We investigate the use of simple colour cuts applied to the SDSS optical imaging to perform photometric selections of emission line galaxies out to z<1. From colour-cuts using the SDSS g, r and i bands, we obtain mean photometric redshifts of z=0.32+-0.08, z=0.44+-0.12 and z=0.65+-0.21. We further calibrate our high redshift selection using spectroscopic observations with the AAOmega spectrograph on the 4m Anglo-Australian Telescope (AAT), observing ~50-200 galaxy candidates in 4 separate fields. With just 1-hour of integration time and with seeing of ~1.6", we successfully determined redshifts for ~65% of the targeted candidates. We calculate the angular correlation functions of the samples and find correlation lengths of r0=2.64 h-1 Mpc, r0=3.62 h-1 Mpc and r0=5.88 h-1 Mpc for the low, mid and high redshift samples respectively. Comparing these results with predicted dark matter clustering, we estimate the bias parameter for each sample to be b=0.70, b=0.92 and b=1.46. We calculate the 2-point redshift-space correlation function at z~0.6 and find a clustering amplitude of s0=6.4 h-1 Mpc. Finally, we use our photometric sample to search for the Integrated Sachs-Wolfe signal in the WMAP 5yr data. We cross-correlate our three redshift samples with the WMAP W, V, Q and K bands and find an overall trend for a positive signal similar to that expected from models. However, the signal in each is relatively weak. Combining all three galaxy samples we find a signal of wTg(<100')=0.20+-0.12 microK in the WMAP W-band, a significance of 1.7sigma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call