Abstract

We present the first extensive photometric results for the eclipsing binary OGLE-GD-ECL-11388 with a period of about 3.5 hours located in the Galactic disk. For the photometric solutions, we obtained the BVI light curves from both the KMTNet observations in 2015 and the OGLE-III survey data from 2001–2009, which show striking reflection effects and very sharp eclipses. The light curve synthesis indicates that the eclipsing system is a HW Vir-type binary with a mass ratio of q = 0.289, an orbital inclination of i = 81.9 deg, and a temperature ratio between both components of T2/T1 = 0.091. A frequency analysis was applied to the light residuals from our binary model; however, no pulsating periodicity from the subdwarf B-type primary component was detected under signal-to-noise amplitude ratios larger than 4.0. A total of 27 minimum epochs spanning 15 yr were used to analyze the eclipse timing variations of OGLE-GD-ECL-11388. It was found that the orbital period has varied due to a continuous period decrease at a rate of dP/dt = −1.1 × 10−8 day yr−1 or a sinusoidal oscillation with a semiamplitude of K = 35 s and a cycle of P3 = 8.9 yr. The period decrease may be explained by an angular momentum loss via magnetic stellar wind braking or may be only a part of the sinusoidal variation. We think the most likely interpretation of the orbital period change, at present, is the light-time effect via the presence of a third body with a mass of MJup, putting it in the boundary zone between planets and brown dwarfs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call