Abstract

ABSTRACT Rapid identification of the optical counterparts of neutron star (NS) merger events discovered by gravitational wave detectors may require observing a large error region and sifting through a large number of transients to identify the object of interest. Given the expense of spectroscopic observations, a question arises: How can we utilize photometric observations for candidate prioritization, and what kinds of photometric observations are needed to achieve this goal? NS merger kilonova exhibits low ejecta mass (∼5 × 10−2 M⊙) and a rapidly evolving photospheric radius (with a velocity ∼0.2c). As a consequence, these sources display rapid optical-flux evolution. Indeed, selection based on fast flux variations is commonly used for young supernovae and NS mergers. In this study, we leverage the best currently available flux-limited transient survey – the Zwicky Transient Facility Bright Transient Survey – to extend and quantify this approach. We focus on selecting transients detected in a 3-day cadence survey and observed at a one-day cadence. We explore their distribution in the phase space defined by g–r, $\dot{g}$, and $\dot{r}$. Our analysis demonstrates that for a significant portion of the time during the first week, the kilonova AT 2017gfo stands out in this phase space. It is important to note that this investigation is subject to various biases and challenges; nevertheless, it suggests that certain photometric observations can be leveraged to identify transients with the highest probability of being fast-evolving events. We also find that a large fraction (≈75 per cent) of the transient candidates with $\vert\dot{g}\vert>0.7$ mag d−1, are cataclysmic variables or active galactic nuclei with radio counterparts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.