Abstract
Time series analysis of zenith‐viewing, wide field‐of‐view photometer measurements of thermospheric OI 630.0‐nm and N2+ 427.8‐nm emissions taken simultaneously from South Pole station (90°S geographic) and from McMurdo station (78°S geographic) during the austral winter months of 2003, 2004, and 2005 are presented. The high sampling rate and continuous, extended duration of measurements at both locations allow for the analysis of phenomena with periods spanning the order of minutes to hours. It is shown that high frequency variations (i.e., with periods of order 1 and 10 min) are often observed at both sites which may be, as supported by colocated magnetometer instrumentation, related to periodic injection of plasma associated with magnetospheric pulsations or their generating processes. We also show that oscillations with periods on the order of 1 h are evident in the power spectrum from both South Pole and McMurdo at both altitudes and emissions and are highly variable. The observations of 12‐, 8‐, 6‐, 4.8‐, and 4‐h oscillations are believed to be due to daily sampling of the auroral zone emissions along with potential moonlight contamination. Other observed periods with order 1 h require further study but are likely due to auroral poleward boundary intensifications. The approach presented herein serves as a means to quickly identify time periods of geophysical activity which will be useful in a future analysis of a much greater, extended climatology of the various spectral features, e.g., a 2 decade survey of poleward moving auroral form events currently in progress. The results herein also assist in providing context to the analysis of synoptic space weather events with photometers and provide support for recently reported auroral intensity variations in the Pc5 band.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.