Abstract
We explore the assembly history of the M31 bulge within a projected major-axis radius of 180" (~680 pc) by studying its stellar populations in Hubble Space Telescope WFC3 and ACS observations. Colors formed by comparing near-ultraviolet vs. optical bands are found to become bluer with increasing major-axis radius, which is opposite to that predicted if the sole sources of near-ultraviolet light were old extreme horizontal branch stars with a negative radial gradient in metallicity. Spectral energy distribution fits require a metal-rich intermediate-age stellar population (300 Myr to 1 Gyr old, ~solar metallicity) in addition to the dominant old population. The radial gradients in age and metallicity of the old stellar population are consistent with those in previous works. For the intermediate-age population, we find an increase in age with radius and a mass fraction that increases up to 2% at 680 pc away from the center. We exclude contamination from the M31 disk and/or halo as the main origin for this population. Our results thus suggest that intermediate-age stars exist beyond the central 5" (19 pc) of M31 and contribute ~1% of the total stellar mass in the bulge. These stars could be related to the secular growth of the M31 bulge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.