Abstract

The potential of an iron(III) corrole complex for use in the detection of nitric oxide (NO) was investigated. The reversible conversion of an dissolved iron(III) corrole to its corresponding nitrosyl complex using gaseous nitric oxide was monitored by UV/Vis spectroscopy. The spectral differences between both coordination compounds were used to determine photometrically small amounts of nitric oxide in the sub-parts-per-million range. The spectral changes due to NO binding were assigned to charge-transfer transitions arising upon NO coordination and were analyzed in detail with support from quantum chemical calculations. Finally, films of the iron(III) corrole were deposited on quartz glass. Thus, the great potential of iron(III) corroles for the development of advanced, highly sensitive and low-energy-consuming photonic sensing devices was demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.