Abstract

Disperse red 1 azobenzene (DR1) doped poly(methyl methacrylate) (PMMA) optical fiber has been shown to have a fast photomechanical response upon 633nm laser irradiation originating in photo-isomerization of the dopants between the cis and trans forms. In this work, laser light of 355nm wavelength is used to investigate the trans to cis isomerization process, which should result in length contraction. A three-point-contact optically actuated beam-controlling mount is made of dye doped polymer fiber segments and metal-coated microscope coverslips to measure the photomechanical response. The length change of the fiber is determined from a quadrant photodetector reading upon beam deflection. The fiber is observed to elongate upon UV irradiation. We find that for DR1 dye in PMMA polymer, the dominant mechanism of the photomechanical effect is photo-thermally stimulated isomerization rather than direct photoisomerization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.