Abstract

Spatiotemporally controllable nitric oxide (NO)-releasers allow us to analyze the physiological effects of NO, a gaseous mediator that modulates many biological signaling networks, and are also candidate chemotherapeutic agents. We designed and synthesized a blue-light-controllable NO releaser, named NOBL-1, which bears an N-nitrosoaminophenol moiety for NO release tethered to a BODIPY dye moiety for harvesting blue light. Photoinduced electron transfer from N-nitrosoaniline to the antenna moiety upon irradiation with relatively noncytotoxic blue light (470-500 nm) should result in NO release with formation of a stable quinone moiety. NO release from NOBL-1 was confirmed by ESR spin trapping and fluorescence detection. Spatially controlled NO release in cells was observed with DAR-4M AM, a fluorogenic NO probe. We also demonstrated temporally controlled vasodilation of rat aorta ex vivo by blue-light-induced NO release from NOBL-1. This compound should be useful for precise examination of the functions of NO with excellent spatiotemporal control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.