Abstract

The temperature dependence of the rate of chlorination of α-alumina with CO/Cl2 gas mixtures exhibits an anomaly, a departure from the normal Arrhenius behavior, in the range 650 to 850°C; it is manifested as a local maximum in the Arrhenius plot at 670°C followed by a local minimum in the range 770 to 850°C. By carefully studying the effect of irradiation of the CO/Cl2 gas mixtures on the rate of chlorination of α-alumina, it is shown that such an anomaly, which has been observed in the chlorination of various metallic oxides, is most likely due to the photochemical formation of phosgene (COCl2) by ambient light incident on the reactant gas mixture during its transport to the main reactor. Phosgene is a better chlorinating agent than a CO/Cl2 mixture. The mechanism of chlorination of α-Al2O3 by CO/Cl2 mixtures subjected to the light emitted by a high-pressure Hg-vapor lamp is elucidated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.