Abstract
Cypermethrin is a synthetic pyrethroid insecticide commonly used both indoors and outdoors. Following its application, cypermethrin residues are exposed to atmospheric oxidants, such as ozone and OH radicals, as well as to solar radiation. The current work focuses on the photochemical degradation of cypermethrin under 254 nm, 310 nm, and solar radiation; including kinetic analysis, quantum yields, and identification of volatile and non-volatile products. The investigation was done using a combined FTIR set-up for parallel analysis of condensed and gas phases. Complementary GC–MS analysis was conducted on the pesticide’s residues. Quantum yields of 0.41 and 0.25 were obtained under 254 and 310 nm, respectively. These values are in agreement with outdoor studies and are higher than the known yields for aqueous solution. The values obtained under all tested conditions suggest that photodegradation of adsorbed cypermethrin is a major outdoor degradation pathway. Oxygen presence was found to increase degradation rate and quantum yield. The identified photoproducts include 3-phenoxybenzaldehyde, 3-phenoxybenzoic acid, acetonitrile ( m-phenoxyphenyl), and cypermethrin isomers on the surface and formic acid, CO 2 and CO in the gas phase. The condensed phase products are more polar than the parent molecule, suggesting that they may be susceptible to a greater leaching rate in soils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Photochemistry & Photobiology, A: Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.