Abstract

Atmospheric field measurements and models of the stratospheric sulfate aerosol layer led to the suggestion that sulfuric acid (H2SO4) must photolyze at high altitudes. We propose that excitation of vibrational overtones of H2SO4 and its hydrate in the near-infrared and visible leads to photolysis, forming sulfur trioxide (SO3) and water. On the basis of absorption cross sections calculated with ab initio methods calibrated to experimental measurements, we estimated J values that are sufficient to explain stratospheric and mesospheric sulfur dioxide (SO2) concentrations and the observation of the sulfate layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.