Abstract

In the continuous search for versatile and better performing probes for optical bioimaging and biosensing applications, many research efforts have focused on the design and optimization of photoluminescent metal nanoclusters. They consist of a metal core composed by a small number of atoms (diameter < 2-3nm), usually coated by a shell of stabilizing ligands of different nature, and are characterized by molecule-like quantization of electronic states, resulting in discrete and tunable optical transitions in the UV-Vis and NIR spectral regions. Recent advances in their size-selective synthesis and tailored surface functionalization have allowed the effective combination of nanoclusters and biologically relevant molecules into hybrid platforms, that hold a large potential for bioimaging purposes, as well as for the detection and tracking of specific markers of biological processes or diseases. Here, we will present an overview of the latest combined imaging or sensing nanocluster-based systems reported in the literature, classified according to the different families of coating ligands (namely, peptides, proteins, nucleic acids, and biocompatible polymers), highlighting for each of them the possible applications in the biomedical field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.