Abstract

Photoluminescent nanomaterials have been widely employed in several biological applications both in vitro and in vivo. For the first time, we report a novel application of sour apple-derived photoluminescent carbon dots (PCDs) for reducing ultra-high molecular weight polyethylene (UHMWPE) wear particle-induced osteolysis using mouse calvarial model. Generally, aseptic prosthetic loosening seems to be a significant postoperative problem for artificial joints replacement, which is mainly contributed by UHMWPE-induced osteolysis. Hence, inhibiting osteoclastic bone-resorption could minimize UHMWPE-induced osteolysis for implant loosening. Prior to osteolysis studies, the prepared sour apple-derived PCDs were employed for bioimaging application. As expected, the prepared PCDs effectively inhibited the UHMWPE particle-induced osteoclastogenesis in vitro. The PCDs treatment effectively inhibited the UHMWPE-induced osteoclast differentiation, F-actin ring pattern, and bone resorption in vitro. Also, the PCDs reduced the UHMWPE-induced ROS stress as well as the expression level of pro-inflammatory cytokines, including TNF-α, IL-1, IL-6, and IL-8. Further, the qPCR and western blot results hypothesized that PCDs inhibited the UHMWPE wear particle-induced osteolysis through suppressing chemerin/ChemR23 signaling and NFATc1 pathway, along with upregulation of SIRT1 expression. Overall, these findings suggest that the synthesized PCDs could be a potential therapeutic material for minimizing UHMWPE particle-induced periprosthetic osteolysis to avoid postoperative complications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call