Abstract

Semiconductor nanomaterials have attracted considerable attention in the design of high efficiency PL up-conversion in heterojunctions or nanostructures at extremely low continuous wave (cw)-excitation intensity. In this study, bioconjugated hybrids were constructed using CdTe and Au nanoparticles (NPs), where two-fold PL enhancement was observed in the solution state. These results are in accordance with theoretical predictions of the local-field effects associated with the combined influence of strong localization of the collective plasmon modes in metallic-semiconducting hybrids and multi-photon absorption into its localized plasmon modes. The feasibility of the nanohybrids as sensors was demonstrated by breaking the bioconjugation through thermal stress, which induced a rapid decrease in luminescence intensity. It is believed that the phenomena is applicable to high-compacted optoelectronic devices and sensing systems that take advantage of both quantum confinement effects and nonlinear optical properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.