Abstract

The influence of nitrogen cluster states on the conduction band (CB) structure of GaAs1−xNx is probed by measuring the effective mass and gyromagnetic ratio of electrons for x < 0.7%. An unusual compositional dependence of these two important CB parameters is found. Such behaviors are well reproduced by a modified k⋅p model taking into account a non‐monotonic loss of Γ character of the CB minimum due to multiple crossings between the red‐shifting conduction band edge and N cluster states. As well, sudden variations in the electron mass can be externally induced by applying a hydrostatic pressure, which brings the upward moving CB edge into interaction with N states, which at ambient pressure are resonant with the GaAs1−xNx CB continuum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.