Abstract

ABSTRACTSharp photoluminescence from the intra-4f shell of Er3+ is observed from erbium doped AlxGal-xAs (0 ≤x ≤ 1) grown by molecular beam epitaxy. The intensity of the luminescence from the erbium is strongly dependent on the aluminum composition with a maximum at x ≈ 0.6. We will present a model that explains the variation in intensity based on the energy transfer coupling efficiency between the host semiconductor and the optically active erbium ions. The coupling efficiency is dominated by the alignment or misalignment of the erbium energy levels with the energy bands of the host semiconductor and by the excess carrier lifetime in the host. The data and model, which are presented here for the first time, are consistent with our previous work on the effects of co-doping with Be or Si and with other workers' measurements of thermal quenching in rare earth doped semiconductors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.