Abstract

In this paper we present photoluminescence measurements of CdSe nanoparticles embedded in transparent glass. Sample is prepared using an original technique, which combines both heat treatment and ultraviolet laser irradiation. Photoluminescence spectra displayed one main emission band at 2.14 eV. We identify this bands energy as basic interband transition in CdSe nanoparticle. We calculated energy of basic (1sh–1se) transition in spherical CdSe quantum dot (QD), within infinite potential barrier, in effective-mass approximation. On the basis of this model, average radius of synthesized CdSe QDs is about 3 nm, which is in consistence with AFM measurements and UV–VIS absorption measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.