Abstract
An important loss mechanism in organic electroluminescent devices is exciton quenching by polarons. Gradual electrochemical doping of various conjugated polymer films enabled the determination of the doping density dependence of photoluminescence quenching. Electrochemical doping was achieved by contacting the film with a solid electrochemical gate and an injecting contact. A sharp reduction in photoluminescence was observed for doping densities between 10${}^{18}$ and 10${}^{19}$ cm${}^{\ensuremath{-}3}$. The doping density dependence is quantitatively modeled by exciton diffusion in a homogeneous density of polarons followed by either F\"orster resonance energy transfer or charge transfer. Both mechanisms need to be considered to describe polaron-induced exciton quenching. Thus, to reduce exciton-polaron quenching in organic optoelectronic devices, both mechanisms must be prevented by reducing the exciton diffusion, the spectral overlap, the doping density, or a combination thereof.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.