Abstract

Ba(Zr0.25Ti0.75)O3 (BZT) powders were synthesized by the polymeric precursor method (PPM) at different temperatures (400, 500 and 700 °C) for 2 h and by the solid state reaction (SSR) at 1350 °C for 4 h. These powders were analyzed by X-ray diffraction (XRD), ultraviolet–visible (UV–vis) absorption spectroscopy and photoluminescence (PL) measurements. XRD patterns indicated that the crystalline BZT powders prepared by both methods present a cubic structure. The different optical band gap values were observed from the UV–vis spectra, suggesting the presence of intermediary energy levels (shallow and deep holes) within the band gap. When excited with 350 nm wavelength at room temperature, the BZT powders obtained by SSR exhibited only one broad PL band with a maximum at around 467 nm (blue emission). On the other hand, it was noted the presence of two broad bands when BZT powders were prepared by the PPM, where the correspondent positions are influenced by the heat treatment temperatures. Finally, a model was proposed in order to explain the origin of the PL property in these powders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.