Abstract

Zinc oxide nanoparticles (ZnO-NPs) were fabricated using carbon quantum dots (CQD) solution using a laser ablation technique to investigate the photoluminescence properties and applications for the interaction of mercury and lead ions. The ablation times were 5, 7, 10, and 13 min. The prepared samples were characterized using UV–visible spectroscopy, Fourier transform infrared spectroscopy, and high-resolution transmission electron microscopy, which verified the formation of ZnO-NPs in the CQD solution and the capping of the spherical nanoparticles by the functional group of the CQD. Spherical ZnO-NPs were formed in the CQD solution with a particle size in the range of 7.5 to 14.03 nm. The prepared samples were then used to detect mercury and lead ions in aqueous solution using photoluminescence spectroscopy. The photoluminescence peak shift in the presence of mercury was greater than that in the presence of lead. Thus, the interaction of zinc oxide–nanoparticles/CQD with mercury is stronger than that of the CQD with lead.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.