Abstract

YBO3:Ce3+,Tb3+ phosphor was prepared from rare earth oxides and boric acid by a solid state reaction. The phosphor absorbs near UV light through 4f–5d transitions of Ce3+, followed by broad emissions through 5d–4f transitions of Ce3+ and sharp emissions through 4f–4f transitions of Tb3+. Spectroscopic investigations for samples with various Ce3+ and Tb3+ concentrations reveal nonradiative energy transfer from Ce3+ to Tb3+. Emission color of the YBO3:Ce3+,Tb3+ varies from blue (0.163, 0.019) to green (0.321, 0.585) depending on the Ce3+ and Tb3+ concentrations. The optimized green-emitting Y0.82Ce0.03Tb0.15BO3 phosphor has an emission color of (0.309, 0.547) with an external quantum efficiency of 76.7%. The photoluminescence intensity of this phosphor at 150°C keeps 87% of its intensity at room temperature, showing sufficient thermal stability for white light emitting diode applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.