Abstract

We have investigated the band-gap pressure coefficients of self-assembled InAs/GaAs quantum dots by calculating 17 systems with different quantum dot shape, size, and alloying profile using atomistic empirical pseudopotential method within the ``strained linear combination of bulk bands'' approach. Our results confirm the experimentally observed significant reductions of the band gap pressure coefficients from the bulk values. We show that the nonlinear pressure coefficients of the bulk InAs and GaAs are responsible for these reductions. We also find a rough universal pressure coefficient versus band gap relationship which agrees quantitatively with the experimental results. We find linear relationships between the percentage of electron wavefunction on the GaAs and the quantum dot band gaps and pressure coefficients. These linear relationships can be used to get the information of the electron wavefunctions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call