Abstract

A novel series of Tb3+, Sm3+ single doped and Tb3+/Sm3+ co-incorporated tungsten tellurite glasses were synthesized by melt quenching technique and corresponding structural as well as luminescence features of the prepared glasses have been reported here. Spectral overlapping between the luminescence spectra of Tb3+ ions and the excitation spectra of Sm3+ ions manifests that the energy transfer process takes place from Tb3+ ions to Sm3+ ions. By using the dual excitations at 377 and 484 nm, the titled co-doped glasses emit green light of wavelength 542 nm along with reddish – orange colour light at 599 nm. In addition to this, there is no possibility of reverse energy transfer which is validated with the help of excitation at 403 nm (Sm3+ ions) as major evidence. The lifetimes of all co-doped glasses decline with increasing Tb3+ doping level in the ligand matrices, indicating the energy migration process takes place from Tb3+→ Sm3+. The chromaticity coordinates of all synthesized co-doped glasses lie in yellowish-orange region of CIE1931 diagram and it shifts to deep yellow region when Tb3+ ion concentration varies. Our findings propose that the titled glasses can be used as visible laser materials for multicolor laser applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call