Abstract

Coupled quantum dot-pairs were fabricated by growing InP self-assembled islands as stressors on InGaAs/GaAs double quantum wells. State filling in the photoluminescence spectra was used to resolve the quantum states in the coupled dots. The total strain field below the stressor decays exponentially with a penetration depth of about 25 nm, within which a dot-pair can be fabricated. Strong coupling is observed at a barrier width less than 4 nm separating the dot-pair. By increasing the indium composition in the lower well in order to match its dot level with one in the upper dot with identical quantum numbers, resonant coupling between the electron states with identical quantum numbers in the two dots can be achieved. Decoupling of the hole states and exchange of the electron bonding states from dominating the upper dot to the lower one are clearly resolved from the state energies and their spacings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.