Abstract
In this work, core-shell ZnO@SiO2nanoparticles (NPs) were infiltrated into a macro/meso-porous silicon (PS) structure, to study its luminescent properties. The core-shell ZnO@SiO2NPs were obtained by colloidal synthesis. The core-shell ZnO@SiO2NP was 5 nm in diameter. The macro/meso-PS structure was made in two steps: we obtained the macroporous silicon (macro-PS) layer fist and the mesoporous silicon (meso-PS) layer second. This process was conducted using different electrolyte solutions, and the change of electrolyte led to a decrease in the special charge region over the wall macro-PS layer; this allowed the building of the meso-PS layers on the walls and the bottom of the macro-PS layer. The SEM results show the cross-section of the macro/meso-PS structure with and without core-shell ZnO@SiO2NPs. These SEM images show that the core-shell ZnO@SiO2NPs that infiltrated into macro/meso-PS structure were more efficiently bonded over all the porous walls. The core-shell ZnO@SiO2PL interacted with the macro/meso-PS structure, modifying its PL intensity and controlling a shift toward a lower wavelength.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.