Abstract

We report on the UV laser-induced fluorescence of hexagonal boron nitride (h-BN) following nanosecond laser irradiation under vacuum and in different environments of nitrogen gas and ambient air. The observed fluorescence bands are tentatively ascribed to impurity and mono ( V N) or multiple (m- V N with m=2 or 3) nitrogen vacancies. A structured fluorescence band between 300 and 350 nm is assigned to impurity-band transition and its complex lineshape is attributed to phonon replicas. An additional band at 340 nm, assigned to V N vacancies on surface, is observed under vacuum and quenched by adsorbed molecular oxygen. UV-irradiation of h-BN under vacuum results in a broad asymmetric fluorescence at ∼400 nm assigned to m- V N vacancies; further irradiation breaks more B–N bonds enriching the surface with elemental boron. However, no boron deposit appears under irradiation of samples in ambient atmosphere. This effect is explained by oxygen healing of radiation-induced surface defects. Formation of the oxide layer prevents B–N dissociation and preserves the bulk sample stoichiometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.