Abstract

We demonstrate, experimentally and theoretically, that the photon emission from gold nanorods can be viewed as a Purcell effect enhanced radiative recombination of hot carriers. By correlating the single-particle photoluminescence spectra and quantum yields of gold nanorods measured for five different excitation wavelengths and varied excitation powers, we illustrate the effects of hot carrier distributions evolving through interband and intraband transitions and the photonic density of states on the nanorod photoluminescence. Our model, using only one fixed input parameter, describes quantitatively both emission from interband recombination and the main photoluminescence peak coinciding with the longitudinal surface plasmon resonance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call