Abstract
We demonstrate, experimentally and theoretically, that the photon emission from gold nanorods can be viewed as a Purcell effect enhanced radiative recombination of hot carriers. By correlating the single-particle photoluminescence spectra and quantum yields of gold nanorods measured for five different excitation wavelengths and varied excitation powers, we illustrate the effects of hot carrier distributions evolving through interband and intraband transitions and the photonic density of states on the nanorod photoluminescence. Our model, using only one fixed input parameter, describes quantitatively both emission from interband recombination and the main photoluminescence peak coinciding with the longitudinal surface plasmon resonance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.