Abstract

Embedding metallic and semiconductor nanoparticles in a chalcogenide glass matrix effectively modifies the photonic properties. Such nanostructured materials could play an important role in optoelectronic devices, catalysis, and imaging applications. In this work, we fabricate and characterize germanium nanocrystals (Ge NCs) embedded in arsenic sulfide thin films by pulsed laser ablation in aliphatic amine solutions. Unstable surface termination of aliphatic groups and stable termination by amine on Ge NCs are indicated by Raman and Fourier-transform infrared spectroscopy measurements. A broad-band photoluminescence in the visible range is observed for the amine functionalized Ge NCs. A noticeable enhancement of fluorescence is observed for Ge NCs in arsenic sulfide, after annealing to remove the residual solvent of the glass matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.