Abstract

In this study, we investigated the luminescence properties of erbium-doped potassium tantalite niobate (KTaxNb1-xO3 or KTN) ceramics, which were prepared by the conventional solid-state reaction synthesis method. In this work, we studied the relationships of the crystal structure, and Raman and photoluminescence (PL) spectra with the tantalum concentration, respectively. The experiments showed that the tantalum dopants modified the intensity of the green, red and near-infrared emission bands. The experiments also showed a blue shift for the 2 mol % erbium doped KTN samples with different tantalum compositions. Doping Ta not only led to the change in PL intensity but also in spectral shapes. The PL spectra showed the splitting peaks for the samples with low Ta compositions. Then these peaks combined and broadened as Ta concentration increase. When Ta was substituted for Nb completely, the luminescence intensity of the green emission band had an increase of approximately about one order of magnitude, which was because of the absence of the first-order phonon relaxation in the high-Ta-concentration samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.