Abstract

We investigated the impact of the presence of dislocations on room-temperature photoluminescence intensity in GaN films grown by molecular beam epitaxy. To determine both screw and edge dislocation densities, we employed x-ray diffraction in conjunction with a geometrical model, which relate the width of the respective reflections to the polar and azimuthal orientational spread. There is no direct dependence of the emission efficiency on the density of either type of dislocation in the samples under investigation. We conclude that dislocations are not the dominant nonradiative recombination centers for GaN grown by molecular beam epitaxy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.