Abstract

Antizeolite fluoride borates LiBa12(BO3)7F4 (LBBF) doped by Ce3+ ions demonstrate photoluminescence (PL) and hold promise for use as phosphors in white light-emitting diodes. In this study, we present the results of modeling the electronic and optical properties of Ce-containing LBBF structures where doping atoms are located at different sites of the host lattice. We also consider the presence of F-centers, which exhibit trap states located within the band gap. We further investigate the nonadiabatic excited state electronic dynamics to elucidate electron-relaxation pathways. The nonadiabatic couplings (NACs) calculations provide transition probabilities facilitated by the nuclear movement. The relaxation rates of electrons and holes are calculated using Redfield’s theory of the formalism of the reduced density matrix (RDM). The PL spectra are calculated using molecular dynamics (MD) sampling and time-integrated methods along the excited state trajectory based on NACs. Mechanisms of PL in LBBF:Ce3+ crystals are interpreted using both computational and experimental observations. This work illustrates the dependence of transition energies, intensities, and relaxation rates of Ce-containing LBBF crystals on a selection of doping sites. In addition to analysis of emission band contributed by cerium, this work allows to identify and reproduce spectral lines hypothetically corresponding to the interband and intraband transitions in F-centers of borate crystals, available in the absence of a metal center.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.