Abstract

To obtain an in-depth understanding of the dynamics and mechanism of carrier recombination in CsPbBr3 nanocrystals (NCs), we have investigated the photoluminescence (PL) of this material at the single-particle level using the time-tagged-time-resolved method. The study reveals two distinct types of PL fluctuations of the NCs, which are assigned to flickering and blinking. The flickering is found to be due to excess surface trap on the NCs, and the flickering single particles are transformed into blinking ones with significant enhancement of PL intensity and stability on postsynthetic surface treatment. Intensity-correlated lifetime analysis of the PL time trace reveals both trap-mediated nonradiative band-edge carrier recombination and positive trion recombination in single NCs. Dynamical and statistical analysis suggests a diffusive nature of the trap states to be responsible for the PL intermittency of the system. These findings throw light on the nature of the trap states, reveal the manifestation of these trap states in PL fluctuation, and provide an effective way to control the dynamics of CsPbBr3 NCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call