Abstract

The optical properties of titanate nanotubes (TiNts) intercalated with rare earths (RE) ions were intensively investigated in this study. To prepare the nanomaterials, sodium titanate nanotubes (Na-TiNts) were submitted to ion exchange reactions with different rare earth elements (RE: Pr3+, Er3+, Nd3+, and Yb3+). To the best of our knowledge, it is the first time that these RE-TiNts were synthesized. All samples were characterized by Raman spectroscopy, X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDS). Furthermore, the optical properties were examined using photoluminescence spectroscopy (PL) and UV-Vis-NIR absorption spectroscopy. The PL intensity (visible range) of the RE-TiNt samples showed a strong dependence when the temperature was decreased down to 20 K. This PL enhancement probably was promoted by electronic modifications in titanate layer band gap and/or interface charge transfers due to RE ions intercalation.

Highlights

  • Oxide based nanostructures exhibit some properties that differ from their bulk counterparts [1, 2]

  • As the emission process comes from electronic structure of the titanate nanotube walls which were affected by the rare earths (RE) insertion, this emission might be absorbed by the lanthanide ion into the interlayer promoting the absorption peaks in the PL spectra

  • We have reported the synthesis of titanate nanotubes intercalated with rare earths (RE) ions (RE: Pr3+, Er3+, Nd3+, and Yb3+)

Read more

Summary

Introduction

Oxide based nanostructures exhibit some properties that differ from their bulk counterparts [1, 2]. Optical properties of nanomaterials are widely investigated due to their potential applications in small devices [1,2,3, 8]. The optical properties of TiNts have been tuned in according to the desired application using different methods to dope and/or inserting ions into the structure of the nanotubes [3, 6, 7, 12, 13]. Rare earths (RE) doping and/or intercalating nanomaterials are widely investigated due to their excellent luminescent characteristics arising from the transitions of electronic levels which have optical applications such as lasers, optical amplifiers, phosphors, and other optical devices [19]. Na+-intercalated titanate nanotubes (Na-TiNts) were prepared by hydrothermal method before being submitted to ion exchange reactions with different rare earth ions (Pr3+, Er3+, Nd3+, and Yb3+). This work proposes a very simple route to modify the optical properties of titanate nanotubes and obtain efficient PL emitters at room and low temperatures

Experimental Procedures
Results and Discussion
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.