Abstract

This paper reports on the emission characteristics of amino-functionalized graphene quantum dots (af-GQDs). We employed the variable stripe length method to measure the net optical gain of af-GQDs. Photoluminescence emission was enhanced through the efficient confinement of photons using an optical resonator. The two-dimensional resonator is made up of a cholesteric liquid crystal (CLC) reflector to enable the redistribution of spontaneous emission from the af-GQDs. The proposed method was shown to increase the intensity of peak emission to more than three times that of the reference sample without a CLC reflector. The peak emission intensity of af-GQDs in the optical resonator grows exponentially with an increase in excitation energy. These results demonstrate the feasibility of two-dimensional optical amplifiers based on CLC reflectors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.