Abstract

AbstractDiatoms are single‐celled algae that make microscale silica shells called “frustules”, which possess intricate nanoscale features imbedded within periodic two‐dimensional pore arrays. In this study, antibody‐functionalized diatom biosilica frustules serve as a microscale biosensor platform for selective and label‐free photoluminescence (PL)‐based detection of immunocomplex formation. The model antibody rabbit immunoglobulin G (IgG) is covalently attached to the frustule biosilica of the disk‐shaped, 10‐µm diatom Cyclotella sp. by silanol amination and crosslinking steps to a surface site density of 3948 ± 499 IgG molecules µm−2. Functionalization of the diatom biosilica with the nucleophilic IgG antibody amplifies the intrinsic blue PL of diatom biosilica by a factor of six. Furthermore, immunocomplex formation with the complimentary antigen anti‐rabbit IgG further increases the peak PL intensity by at least a factor of three, whereas a non‐complimentary antigen (goat anti‐human IgG) does not. The nucleophilic immunocomplex increases the PL intensity by donating electrons to non‐radiative defect sites on the photoluminescent diatom biosilica, thereby decreasing non‐radiative electron decay and increasing radiative emission. This unique enhancement in PL emission is correlated to the antigen (goat anti‐rabbit IgG) concentration, where immunocomplex binding follows a Langmuir isotherm with binding constant of 2.8 ± 0.7 × 10−7 M.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.