Abstract

For this study, terbium-doped yttrium aluminum garnet (YAG:Tb) phosphor powders were prepared via the combustion process using the 1:1 ratio of metal ions to reagents. The characteristics of the synthesized nano powder were investigated by means of X-ray diffraction (XRD), scanning electron microscope (SEM), and photoluminescence. Single-phase cubic YAG:Tb crystalline powder was obtained at 800 °C by directly crystallizing it from amorphous materials, as determined by XRD techniques. There were no intermediate phases such as yttrium aluminum perovskite (YAlO3) and yttrium aluminum monoclinic (Y4Al2O9) observed in the sintering process. The SEM image showed that the resulting YAG:Tb powders had uniform sizes and good homogeneity. With the increase in the sintering temperature, the grain size increased. The photoluminescence spectra of the YAG:Tb nanoparticles were investigated to determine the energy level of electron transition related to luminescence processes. There were three peaks in the excited spectrum, and the major one was a broad band of around 274 nm. Also, the YAG:Tb nanoparticles showed two emission peaks in the range of 450 × 500 and 525 × 560 nm, respectively, and had maximum intensity at 545 nm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.