Abstract
The photoluminescence (PL) characteristics of GaInNAs quantum wells (QWs) after high-temperature postgrowth annealing were studied. The QWs were grown using a radio-frequency nitrogen plasma source in conjunction with a solid-source molecular-beam epitaxy system. It was found that annealing at high temperature (840 °C) and long duration (10 min) results in significant improvements to the PL characteristics of the GaInNAs QWs. The shift of the GaInNAs and GaInAs PL peak wavelength resulting from high-temperature annealing is dependent on the In composition. It is suggested that the dominant mechanisms that give rise to the blueshift of the PL peak wavelength in GaInNAs QWs with high-In composition are residual-strain-induced GaAs/GaInNAs/GaAs interface interdiffusion, and defect-assisted diffusion-related effects, both of which originate from the growth process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.