Abstract

A detailed description of the thermal relaxation processes in MEH−PPV is reported. Bulk methods such as DMTA were employed in conjunction with other techniques that probe molecular motions, such as fluorescence spectroscopy, thermal stimulated current, and 13C NMR. From the two main transitions observed (glass transition process at 340 K and β-relaxation between 200 and 220 K), it was demonstrated that the first is strongly correlated with the dissociation of a fluorescent emissive interchain complex and that the second relaxation involves movements of the lateral substituents of the polymer backbone and, more specifically, their CH2 groups. NMR dipolar chemical shift correlation experiments pointed an increasing gain in mobility through the side chain, the lateral carbons close to the aromatic ring being more rigid than those located more distant from the main polymer chain. A kinetic model involving the dissociation of interchains to re-form intrachain excitons was proposed to explain the profiles of the photoluminescence spectra at higher temperatures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.