Abstract

Photovoltaic (PV) device development is much more expensive and time-consuming than the development of the absorber layer alone. This Perspective focuses on two methods that can be used to rapidly assess and develop PV absorber materials independent of device development. The absorber material properties of quasi-Fermi level splitting and carrier diffusion length under steady effective 1 Sun illumination are indicators of a material's ability to achieve high VOC and JSC. These two material properties can be rapidly and simultaneously assessed with steady-state absolute intensity photoluminescence and photoconductivity measurements. As a result, these methods are extremely useful for predicting the quality and stability of PV materials prior to PV device development. Here, we summarize the methods, discuss their strengths and weaknesses, and compare photoluminescence and photoconductivity results with device performance for four hybrid perovskite compositions of various bandgaps (1.35-1.82 eV), CISe, CIGSe, and CZTSe.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call