Abstract

We report experimental results regarding the development of Er3+-doped glass microspherical cavities for the fabrication of compact sources at 1.55μm. We investigate several different approaches in order to fabricate the microspheres including direct melting of Er3+-doped glass powders, synthesis of Er3+-doped monolithic microspheres by drawing Er3+-doped glass, and coating of silica microspheres with an Er3+-doped sol–gel layer. Details of the different fabrication processes are presented together with the photoluminescence characterization in free space configuration of the microspheres and of the glass precursor. We have analyzed the photoluminescence spectra of the whispering gallery modes of the microspheres excited using evanescent coupling and we demonstrate tunable laser action in a wide range of wavelengths around 1.55μm. As much as 90μW of laser output power was measured in Er3+-doped glass microspheres.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.