Abstract
AbstractZinc germanium diphosphide (ZnGeP2) is a nonlinear optical material used in mid-infrared optical parametric oscillators. The near-infrared photoluminescence (PL) from single crystals of bulk ZnGeP2 has been studied as a function of excitation power, wavelength, temperature, and polarization. At 5 K, a broad PL band extending from 0.7 µm to beyond 1 µm is typically observed. Two distinct emissions with different polarization, power, and temperature behaviors have been resolved. These bands have peaks in intensity near 1.6 eV and 1.4 eV. The relative intensities of these two bands were found to correlate with the presence of phosphorus vacancies, as determined by electron paramagnetic resonance (EPR). A resonance in the intensity of the 1.6-eV band occurs when pumping into a level ∼90 meV below the minimum conduction band. This level is tentatively assigned to the shallow state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.