Abstract

Gamma-AlON: 0.2Eu2+, Tb3+ phosphors were firstly synthesized via a high temperature solid-state reaction. For the phosphors, luminescence properties as well as energy transfer mechanism were investigated in detail. The energy transfer from Eu2+ to Tb3+ in the γ-AlON host was ascribed to the dipole-dipole mechanism, and the efficiency and critical distance in the energy transfer process were also estimated. γ-AlON: 0.2Eu2+, Tb3+ phosphors showed a broad-band emission centered at about 405 nm and other several emission peaks, which were assigned to the 5d–4f transition of Eu2+ ions and the 5D4–7FJ (J = 6, 5, 4, and 3) characteristic transitions of Tb3+ ions, respectively. The results indicated that γ-AlON: 0.2Eu2+, Tb3+ phosphors have great potential application in white light-emitting diodes due to its broad-band excitation in the ultraviolet range and the high-efficient green light emission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.