Abstract

We have studied the exciton and electron-hole droplet (EHD) luminescence in optically irradiated germanium at temperatures between 1.8 and 4.2 K in the presence of an electric field. Simultaneously the electric conductivity was measured. The sample material was high-purity Ge (NA−ND=7·1010 cm−3) andp-doped Ge withNA=3·1014 cm−3. In the high-purity Ge samples the exciton and EHD-luminescence intensity decreased nearly linearly as a function of the applied electric current, whereas the dependence upon the electric field was more complicated. Our results could be explained by a model in which carrier annihilation at the contacts following a rapid drifting process plays a dominant role (drift model). In thep-doped Ge samples the current-dependence of the luminescence intensity was qualitatively similar. However, here the drift model is not strictly valid any more because of the reduced carrier mobility and the generation of additional carriers by impurity impact ionization. During variation of the electric field, the luminescence intensity and the electric current show hysteresis. Here the capture of the moving carriers by the EHD appears to play an important role, in addition to the EHD-nucleation process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call